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a b s t r a c t

Optimal control of a thin-walled rotating beam is considered using a higher-order shear

deformation theory (HSDT). The beam is pretwisted, doubly tapered, and carries a tip

rotor. It comprises an orthotropic host with surface-embedded transversely isotropic

piezoelectric sensor-actuator pairs. Spanwise and thicknesswise variation of the electric

system, wherein all displacement variables are coupled via the electric field. Hence,

coupling between bending-transverse shear and extension-twist occurs even when the

ply angle configuration has circumferentially uniform stiffness. Optimal LQR control

with state feedback is used to obtain the control input, i.e., charge density (hence

voltage) applied to actuators. Parametric studies involving ply-angle, rotation speeds of

beam and rotor, pretwist, taper, rotor mass, and saturation constraint on actuator

voltage, are performed. The HSDT yields lowest coupled natural frequencies (as

compared to unshearable and first-order shear models) thus providing conservative

data, useful for passive and active control designs. The present plant model, with

spanwise varying electric field, yields an order-of-magnitude reduction in settling time

and control voltage, and lower response, vis-a-vis the decoupled approach.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber-reinforced composites with embedded piezoelectric elements provide a means for synthesis of passive and active
control. Their common application is in aerospace structures requiring precise control. This is often realized by optimal
controller design that yields reduced settling time and control energy. Such designs require an accurate plant model that
incorporates electromechanical coupling, transverse shearability, satisfaction of traction free boundary conditions (BCs),
warping restraint, etc.

Kim and White [1] analyzed a non-rotating thick-walled beam using a cubic variation of axial displacements to satisfy
traction free BCs. Their results correlated well with available experimental results for both symmetric and antisymmetric
layups. Eigenvibrations for various rotating beam configurations have been widely researched. Rosen et al. [2] studied
pretwisted blading using non-physical coordinates and untwisted eigenvibration modes to de-couple the two plane
bending. Jung et al. [3] used the first-order shear deformation theory (FSDT) and a mixed variational approach with plane
stress constitutive relations. They obtained results showing a pronounced effect of wall thickness and first-order transverse
shear on eigenvibrations. Song et al. [4] considered the FSDT for eigenvibration control of pretwisted blades with
piezoactuators. They used either proportional or velocity feedback for control moments and studied the effect of pretwist.
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Nomenclature

aij
p, ~ap

ij, aij[z], ~aij½z� global stiffnesses (untwisted, HSDT,
pretwist, HSDT with pretwist)

aPi, LPij global piezoelectric coefficients
As, Ss actuator and sensor patch distribution, respec-

tively
2btip; 2broot tip depth; root depth
Cij

P,rP 3-D elastic constants, mass density of piezo-
patch

CP, AP,tP, 2k capacitance, surface area, thickness, and
width of piezopatch, respectively

eij, Eij piezoelectric, reduced piezoelectric constants
of piezopatch

E ij reduced piezoelectric coefficients of smart
composite beam

Ei; Di electric field vector; electric displacement
vector

Ei
H,Gij

H, nH
ij , rH Youngs moduli, shear moduli, Poisson’s

ratios, density of orthotropic host
fs, fz, fn distribution of piezopatches in s-, z-, n-direc-

tion, respectively
Fo, a primary and secondary warping function,

respectively
~H; R; RR electric enthalpy; beam position vector; rotor

position vector
(I,J,K); (i,j,k); (iR,jR, kR):]inertial-fixed basis; beam-fixed

bases; rotor-fixed bases
(I1; . . . ; I9; I

p
xx; I

p
yy; I

p
oo; Î P); b1, structural inertia quanti-

ties; mass per unit length of beam
Izz, Ixxyy polar, inplane mass moment of inertia of tip

rotor
L, 2b, 2c, h span, depth, width, and wall thickness,

respectively, of beam
mp, lp direction cosines between local principal- and

local surface-coordinate directions
M; G; K mass matrix; gyroscopic matrix; stiffness

matrix
Mij; mij submatrices of mass matrix due to beam; due

to tip rotor
N; Ui, qi number of trial functions; N-dimensional

vectors of trial functions, generalized coordi-
nates

py[z,t]; pm applied line load in y-direction; initial value
of applied uniform line load

P; Ĝ, ~G Riccati matrix; state feedback gain for control
voltage, charge density

~qPi; Ci surface charge generated on sensors; asso-
ciated discretization matrix

Q; F external excitation vector; piezoelectrically
induced forcing coefficient vector

Qij
P reduced stiffness of piezopatch

Q
H

ij transformed reduced stiffness of host

Q ij transformed reduced stiffnesses of smart com-
posite beam

R0 hub radius
R[z] spanwise variation of axial (centrifugal) force
(s, n) local cross-section surface coordinates (tan-

gential-, normal- to mid-surface)
u, v, w lag, flap, and axial (warping) displacement,

respectively
u, I, P control voltage, current, and power required,

respectively
uo, vo, wo, f, yx, yy displacement field (lag, flap of point

o(0,0), axial, twist, x- and y-rotations)
v* nondimensional flap response at beam tip
Vmax actuator saturation voltage
wc[z;t] axial displacement of C(xc,yc) lying on positive

xp axis
w, gsz mid-contour axial displacement and shear strain
x; A; B; W state; state matrix; control input matrix;

excitation input matrix
(x, y, z); (x; y) beam-fixed coordinates; corresponding

mid-contour quantities
(xp, yp, zp); (xp; yp) local cross-section principal coordi-

nates; corresponding mid-contour quantities
Z; R; a, m, Z state weighting matrix; control input

weighting matrix; corresponding weights
b; b0; b1, b2 pretwist; linear coefficient; quadratic

coefficients of pretwist
(gxz; gyz); (gxz; gyz) transverse shear strains and their

mid-contour counterparts
de, dt , dh tracers for classical, FSDT, and HSDT formula-

tion, respectively
(ess; ezz; gsz; gnz; gns) strain components in surface coor-

dinates
(exx; eyy; gxy) inplane strains
xij, zij dielectric, reduced dielectric constants of

piezopatch
r; rR mass density of beam and rotor, respectively
(sss;szz; tsz; tnz; tns) stress components in surface coor-

dinates
s; 2ctip; 2croot taper ratio; tip width; root width
s; ŝ applied surface charge density; corresponding

time dependency vector
c; co electric potential; spanwise variation of po-

tential
O; y; oi angular speed of hub/beam; ply-angle; natural

frequency
O, mR, kR, rm angular speed, mass, polar radius of

gyration, offset, of tip rotor
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Yoo et al. [5] analyzed eigenvibrations of a pretwisted blade (arbitrarily oriented at the hub) carrying a tip mass. They
retained gyroscopic effects and used hybrid deformation variables to linearize the system. Banerjee et al. [6] used the
dynamic stiffness method in conjunction with the Wittrick–Williams algorithm to obtain natural frequencies of rotating,
linearly tapered, unshearable beams.

Fazelzadeh and Hosseini [7] considered a FSDT model of a pretwisted, thin-walled, rotating FGM beam under aero-
thermoelastic loading with through-thickness temperature gradients. They used first-order piston theory aerodynamics,
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and gas dynamics theory for surface temperature. The solution obtained via extended Galerkin method showed a softening
behavior with increasing Mach, number. Fazelzadeh et al. [8] obtained similar results using the differential quadrature
method. Lee et al. [9] analyzed the inplane (bending-extension) free vibration of an unshearable, rotating curved beam
with an elastically restrained root. A softening behavior with increasing speed, leading to divergence instability, was
obtained for large values of the arc angle. Subsequently Lee et al. [10] obtained divergence instability for a rotating
Timoshenko blade when the precone is large. Mei [11] used the differential transformation technique for flap mode
analysis of a rotating unshearable beam and obtained eigensolutions in close agreement with available results.

Active control studies on rotating beams are comparatively fewer. Kunz [12] analyzed a saturation controller via
perturbation and numerical methods, and found it effective in reducing tip responses even at moderately high rotation
speeds and despite significant intermodal coupling. Choi et al. [13] considered a thin-walled, composite blade with PVDF
sensors and piezoelectric fiber actuators (i.e., macro-fiber composites MFCs) and retained the Coriolis effect. Negative
velocity feedback was used, although they proposed optimal control for future studies. The work was extended for
pretwisted blades in [14]. Wei et al. [15] presented experimental results on control of an angular-accelerating sandwich-
beam comprising an ER fluid core with aluminium surface layers. They proposed an optimal controller design for future
studies. Cai and Lim [16] designed an optimal tracking controller for inplane motions of a flexible hub-beam system. A
simplified first-order approximation coupling model that neglects axial deformation effect was used. Subsequently in [17]
they included damping due to beam material, air, and hub bearing, and obtained results for damped passive response.
Shete et al. [18] studied the optimal control of a pretwisted, composite, rotating beam with distributed piezoelectric
sensors/actuators. Both classical and instantaneous optimal control methods were used. Significant eigenfrequency
enhancements during structural tailoring via the HSDT model were reported. Lin [19] designed a PD controller using
piezoelectric sensing and actuation for a rotating, unshearable beam with elastically restrained root. An uncoupled
electromechanical model was considered in [18,19].

Pietrzakowski [20] considered the inplane variation of electric potential for velocity feedback control of a plate with
piezoelectric sensors/actuators. An increase in plate stiffness was reported due to the coupling. Narayanan and
Balamurugan [21] developed a Timoshenko laminated-beam finite element model with distributed piezoelectric sensors/
actuators. Results using velocity feedback, Lyapunov feedback, and LQR optimal controller designs showed that LQR design
was most control effective and required least actuation voltage. Similar conclusions were obtained by Vasques and
Rodrigues [22] when comparing constant gain and constant amplitude velocity feedback with the LQR and LQG methods,
within a coupled electromechanical formulation.

Passive unimodal damping with shunted piezoelectrics was first demonstrated by Hagood and Flotow [23]. For resonant
shunting, the circuit comprising series inductor–resistor shunt and piezoelectric capacitance is tuned to the structural
resonance frequency of the mode to be damped, i.e., electrical resonance is tuned to the structural resonance. However,
large inductors are required to produce low-frequency electrical resonance. Andreaus et al. [24] obtained efficient passive
control of multimodal vibrations by interconnecting distributed piezoelectric bender transducers, embedded along beam
length, via a synthesized passive electrical circuit analog of a Timoshenko beam along with resistive elements for
dissipation. Resistor placements are optimized by either maximizing the decay rate or minimizing the strain energy time
envelop. Thus, the electrical dissipative circuit provides multiresonance coupling with mechanical modes as well as
optimal electrical dissipation of mechanical energy.

Multimode shunt design whereby shunt impedance is obtained from an effective feedback controller is discussed in
Moheimani and Fleming [25]. The design of active shunt impedance using optimal controllers like LQG is also considered
therein to overcome the limitation posed by large inductor requirements. Guyomar et al. [26] proposed a semi-passive
control method termed synchronized switch damping, whereby piezoelements are in an open circuit for the most part
except when a statistically evaluated threshold for deflection (or voltage) is reached, at which time a switch is triggered to
invert the voltage. However, damping was found to decrease with increase in excitation frequency. The active shunting
method in [25] and multimodal control in [24] hold great potential for implementation and further research. The LQR
active control method considered herein is without shunting. It minimizes a performance index comprising the conflicting
combination of mechanical energy and control input energy. This procedure, as is well known, yields increased gain
margins and phase margins which result in reduced settling time and overshoot [15–17,21,22].

Optimal piezoelectric sensor/actuator placement and sizing using genetic algorithms is fast gaining interest among
researchers. Han and Lee [27] sequentially used controllability and observability criteria with spillover prevention.
Significant plate vibration reduction was observed for the first three modes using coupled positive position feedback
during experimental validations. Dhuri and Sheshu [28] considered a multi-objective GA optimization to obtain minimum
change in natural frequency (due to piezopatches) and good controllability for a rotating beam.

In [18,19,21,29] it is assumed that electric potential varies only through the thickness of the piezopatch, in a linear
manner. This implies that electric field developed has zero inplane components and a spatially constant thickness-wise
component that is proportional to applied voltage. This results in decoupling of the electromechanical system wherein
controller design does not involve solution of charge equation. The present work discards this assumption by also
considering the spanwise variation of the electric potential. This leads to a fully coupled electromechanical system where
the charge equation is solved for controller design. Further, this also results in a coupling of all mechanical field variables
(hence vibration modes), even for the special ply layup considered in [18] wherein this full coupling was absent, i.e., in [18]
a decoupling occurs of bending—transverse shear motion on one hand and extension—twist motion on the other. The
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effect of taper (present in rotor blade designs) and tip rotor (resulting in gyroscopic forces) were not included in [18].
Herein, a HSDT model for pretwisted, composite blades is considered. The model formulation includes a tip rotor, double-
taper, and spanwise distributed piezoelectric sensor/actuator pairs with electromechanical coupling considered. Optimal
LQR design with state feedback is used to obtain the control input to actuators. Influence of electromechanical coupling,
shear deformation, pretwist, taper, and the tip rotor are assessed.

2. Electro-mechanical system equations

Consider a straight beam, of span L, rigidly mounted on a rigid hub of radius R0 (Fig. 1). The beam-hub system rotates
with constant angular velocity OJ¼Oj about the fixed-in-space longitudinal axis A�A of the hub. The beam has a hollow,
single celled, rectangular cross-section with uniform wall thickness h, width 2c, and depth 2b (Fig. 2). The cross-section is
doubly tapered such that its width to depth ratio remains constant along the span. The taper ratio is defined as
s¼ ctip=croot ¼ btip=broot. Actuator and sensor patches, each of thickness tP and width 2k, are embedded on the top and
bottom surface of the beam, respectively (Fig. 2). A pretwist b½z� exists with either b½z� ¼ b0z=L or b½z� ¼ b1z=Lþb2ðz=LÞ2

defining linearly or quadratically varying pretwist, respectively.
A tip rotor of mass mR, polar radius of gyration kR, is attached at an offset rm from beam tip, and spins with constant

angular velocity OkR, where (iR,jR,kR) define the rotor fixed bases. The inertial fixed coordinate system (X, Y, Z) with bases
(I,J,K) originates at the hub center O, while the beam-fixed coordinate system (x, y, z) with bases (i, j, k) originates at the
beam root (i.e., point of attachment of beam to hub). Each cross-section contains two local coordinate systems, i.e., (s, n, z)
tp

yp

xp

ActuatorHost

y

2κ

2c

xβ

h s

n
s

s
n
Sensor

s
n

n

2b
o(0,0) C
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surface coordinates, and (xp, yp, zp) coordinates along the cross-section principal axes. For a point lying on the cross-section
mid-contour (n=0), using overbars ( ) to denotes mid-contour quantities, the beam fixed coordinates are related to the
sections principal axes coordinates as

x½s; z� ¼ xp
½s�cosb�yp

½s�sinb; y½s; z� ¼ xp
½s�sinbþyp

½s�cosb; z½s� ¼ zp (1)

2.1. Kinematics

The assumptions adopted are: (1) w5u, w5v, where u (lag), v (flap), and w (axial/warping) denote displacements in
the x, y, and z directions, respectively. Hence, nonlinearity involving the axial displacement is neglected. (2) Spanwise
dependent rate of twist, i.e., f0 �f0½z�, in order to model the effect of warping restraint. (3) Quadratic variation of
transverse shear strains gxz and gyz through wall thickness, in order to satisfy traction free BCs on upper and lower
bounding faces (n¼ 7h=2) of the generally orthotropic beam wall. (4) Secondary warping effect for points off the mid-
contour is incorporated. (5) No in-plane cross-sectional distortion occurs (i.e., exx ¼ eyy ¼ gxy ¼ 0). (6) Torsional shear strain
along mid-contour pertains to a s-wise constant shear flow for a closed contour. (7) Ratio of wall thickness to wall radius of
curvature is very small compared to unity (and exactly zero for cross-sections composed of linear segments). Hence,
direction cosines of the normal n are expressible as lpð ¼ xp

;n ¼ dyp=dsÞ � yp
;s and mpð ¼ yp

;n ¼�dxp=dsÞ ��xp
;s. (8) snn is

negligible in the constitutive law.
Using assumption (5) and Eq. (1) the u[x,y,z,t] and v[x,y,z,t] displacements of a cross-section point are related to the

corresponding displacements uo[z;t] and vo[z;t] of the (arbitrary) reference point o(0,0), (Fig. 2), and the (small) twist f½z; t�
measured about the z axis, as [18]

u¼ uo� ypmbþxplb
� �

f�n mpmbþ lplb
� �

f; v¼ voþ xpmb�yplb
� �

fþn lpmb�mplb
� �

f (2)

Here mp ¼�dxp=ds and lp ¼ dyp=ds are direction cosines of (s, n, z) axes referred to (xp, yp, zp) axes; and mb ¼ cosb and
lb ¼ sinb. The in-plane strains (using assumption (1)) and transverse shear strains (using assumption (3)) are

exx ¼ u;xþ0:5 u;2x þv;2x
� �

; eyy ¼ v;yþ0:5 u;2y þv;2y

� �
; gxy ¼ ðu;yþv;xþu;xu;yþv;xv;yÞ (3a)

gxz½z;n; t� ¼ gxz½z; t�þnZx½z; t�þn2zx½z; t�; gyz½z;n; t� ¼ gyz½z; t�þnZy½z; t�þn2zy½z; t� (3b)

The stress–strain relations (expressed in the (s,n,z) system) for a generally orthotropic material are employed and the
traction-free boundary conditions are imposed (i.e., tns ¼ tnz ¼ snn ¼ 0 at n¼ 7h=2) with Eqs. (3b), assumptions (5, 8), and
kinematic compatibility being considered. This results in a parabolic variation for the transverse shear strains, i.e.,

gxz ¼ 1�4n2=h2
� �

gxz½z; t�; gyz ¼ 1�4n2=h2
� �

gyz½z; t� (4)

This is the essence of the HSDT considered here. The overbars ( ) on displacement and strain terms denote cross-section
mid-contour quantities.

The axial (warping) displacement w[x,y,z,t] is derived using shear strains. First gsz is expressed as the sum of bending
shear strains gxz, gyz (using their parabolic form with n=0 and coordinate transformation) and torsional shear strains based
on constant shear flow (assumption (6)). This is equated to the strain–displacement representation of gsz in terms of mid-
contour displacement. Using assumption (7) and Eq. (2) in the resulting expression and then integrating it over the closed
mid-contour, while requiring continuity of w, yields the torsional shear flow and w ;s. Similarly gnz is expressed in terms of
bending shear strains (torsional shear flow does not contribute) and equated to its strain–displacement representation to
yield w,n after using assumption (7) and Eq. (2). Finally, starting from a conveniently chosen mid-contour origin C(xc,yc)
(taken to lie on the positive xp axis for the box-beam) and integrating w ;s with respect to s, and then integrating w,n with
respect to n in the interval [0, n], one obtains [18]

w¼wo�ðFo½s�þna½s�Þf0�dh
4n3

3h2
ðuo
0 �yyÞðl

pmb�mplbÞþðvo
0 �yxÞðm

pmbþ lplbÞ
� �

þ xp
þnlp

� �
lb

�
þ yp

þnmp
� �

mb
�
ðdtyx�devo

0 Þ� xp
þnlp

� �
mb� yp

þnmp
� �

lb
� �

ðdtyyþdeuo
0 Þ (5)

where

yy½z; t� ¼ uo
0 �gxz; yx½z; t� ¼ �vo

0 þgyz; rn½s� ¼ xp dyp

ds
�yp dxp

ds
; c¼

H
rn dsH

ds

a½s� ¼ �xp dxp

ds
�yp dyp

ds
; Fo ¼

Z s

0
ðrn�cÞds�; wo½z; t� ¼wc�ycyxþxcyy (6)

Here ð0Þ ¼ dðÞ=dz; wc[z;t] is the axial displacement of point C; yx½z; t� and yy½z; t� are rotations about x and y axes,
respectively; Fo½s� and a[s] are primary and secondary warping functions, respectively. Tracers ðde; dt ; dhÞ assume values
(1,0,0), (0,1,0) and (0,1,1) when considering the beam as unshearable, first-order shearable and higher-order shearable,
respectively. Hence, the displacement field variables are uo[z;t], vo[z;t], yx½z; t�, yy½z; t�, wo[z;t], and f½z; t�.
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2.2. Piezopatch distribution, electric field

The transversely isotropic PZT-4 sensor and actuator patches are embedded on the bottom and top face, respectively.
Their surface of isotropy is parallel to the mid-surface of the pretwisted beam (Fig. 2). They are distributed as

fs ¼H½s�b�cþk��H½s�b�c�k�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
As

þH½s�3b�3cþk��H½s�3b�3c�k�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ss

(7a)

fz ¼
XP
i ¼ 1

ðH½z�z�i ��H½z�zþi �Þ; fn ¼H½n�h=2þtP��H½n�h=2� (7b)

where fs, fz, and fn are functions defining the piezopatch distribution in the s, n, and z directions, respectively. Here H, As,
and Ss denote the Heaviside, actuator, and sensor distributions, respectively, and P is the number of collocated sensor–
actuator pairs along the beam length. The electric potential distribution is assumed to be linear through the thickness of
the actuator patch [20,21]. This amounts to discarding the shear-like electrical effect [30]. Considering the piezopatch to be
grounded at the interface with the laminate substrate, the electric potential distribution can be written as
c½s;n; z; t� ¼ n̂co½z; t� where n̂ ¼ n�h=2þtP . Thus the electric field due to applied control voltage on the actuator is,

E1 ¼�qc=qs¼ 0; E2 ¼�qc=qz¼�n̂co
0 ; E3 ¼�qc=qn¼�co½z; t� (8)

Thus, the electric field is nonuniform in the spanwise direction. This yields a fully coupled electromechanical system as
discussed below.

2.3. Constitutive relations

Using assumption (8), the reduced constitutive law for orthotropic (graphite-epoxy) host and transversely isotropic
piezopatches (PZT-4) are written [4]. Hence the stress–strain relation for a constituent piezocomposite beam-wall layer is
expressed as

sss

szz

tsz

8><
>:

9>=
>;¼

Q 11 Q 12 Q 16

Q 12 Q 22 Q 26

Q 16 Q 26 Q 66

2
64

3
75

ess

ezz

gsz

8><
>:

9>=
>;�

E31E3

E31E3

0

8><
>:

9>=
>;;

tnz

tns

( )
¼

Q 44 Q 45

Q 45 Q 55

" #
gnz

gns

( )
�
E15E2

0

( )
(9)

where Q ij and E ij are transformed reduced stiffnesses and reduced piezoelectric coefficients, respectively, of the composite
beam (Appendix A). The 3-D constitutive equations are reduced to a 1-D dependency via strain–displacement relations and
integration over the cross-section (i.e., first through the thickness and then over the mid-contour).

In this regard it should be noted that Maurini et al. [30] used equivalent-single-layer Euler–Bernoulli kinematics to
study a layered piezocomposite beam. Layerwise linear distributions for plane stresses (with zero shear) and electric
potential, and layerwise constant electric displacement, is assumed. Zero transverse inplane stress resultants are imposed.
The cross section remains normal to the beam axis but is allowed to deform in its own plane. The model predicts
electromechanical constitutive coefficients accurately even when thickness of piezolayers is comparable to that of elastic
ones. As compared to the Euler–Bernoulli formulation in [30], the present formulation accounts for inplane and transverse
shear stresses, but without permitting inplane cross-sectional distortion (i.e., assumption (5)).

2.4. Governing system

Hamiltons principle for the beam with rotor reads [31,4],Z t1

t0

Z
t
ðd ~Hþr €R � dRÞdtþ

Z
tR

ðrR
€RR � dRRÞdtR�

Z
z
ðskdUk�sdcÞdz

	 

dt¼ 0 (10)

where

~H ¼ 1

2
sssessþszzezzþtszgszþtnzgnz�E31E3ess�E32E3ezz�x11E2

2�z33E2
3

� �
(11)

R¼ ½xþu�iþ½yþv�jþ½R0þzþw�k (12)

RR ¼ uoiþvojþðLþwoþR0ÞkþxiRþyjRþðrmþzÞkR (13)

Here t, tR, and z denote the beam-volume, rotor-volume, and beam-surface, respectively; sk, Uk, s, c, ~H, R, and RR denote
surface traction vector, displacement vector, applied surface charge density, electric potential, electric enthalpy, position
vector for deformed beam, and position vector for rotor, respectively; xij and zij denote dielectric and reduced dielectric
constants, respectively (Appendix A).

A vertical (y-directed) line load, py[z,t] is considered. The resulting seven electromechanical equations of motion (EOM)
and BC’s are in terms of displacement field variables uo, vo, yx, yy, wo, f, and electric potential co, which depend on [z,t].
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Since the beam is directed radially outward from the hub, Coriolis effects due to beam rotation (O) are neglected [32]. The
beam is assumed stiffer in the longitudinal direction, (i.e., ðwo; €woÞ5 ðuo;voÞ), and the circumferentially uniform stiffness
(CUS) ply angle configuration is considered. This yields a linearized and coupled system governing the motion
(bending—transverse shear, i.e., flap-lag, and extension-twist) and the electric potential. The coupling occurs via co. Note
that the present model considers the coupled electro-mechanical system, i.e., the electric field coðz; tÞ equation is one of the
seven coupled governing equations. This was not considered in [18,29]. Therein the electric field variation in thickness and
spanwise direction was neglected, i.e., E3 = u[t]/tP where u[t] is the amplified control voltage applied to actuators, thus
resulting in six equations governing mechanical field variables only. When such a spatially constant electric potential is
assumed, flap-lag and extension-twist motions decouple [29,18] in contrast to the present case. The present governing
system is obtained as

duo : f½dhI1þdeI7�ð €uo
0 �O2uo

0 Þg0 þf½dhI5þdeI9�ð €vo
0 �O2vo

0 Þg0 þdhf½I3�I1�ð
€yy�O2yyÞg

0�dhf½I6�I5�ð
€yx�O2yxÞg

0

�b1ð €uo�O2uoÞ�deða22uo
00 þa23vo

00 Þ00 þðb1O
2Ruo

0 Þ0 þdtfða44þdh ~a1Þðuo
0 �yyÞþða43þdh ~a2Þyx

0

þðdh ~a30�a42Þyy
0 þða45þdh ~a31Þðyxþvo

0 Þg0 þdhf½ ~a3vo
00 þ ~a32uo

00 �0 þ½ ~a5yy
0 � ~a6uo

00 � ~a4ðyxþvo
0 Þ

� ~a34yx
0 � ~a35vo

00 � ~a32ðuo
0 �yyÞ�

00g�dtðmbaP4co�l2baP8co
0 Þ0 þdeðlbaP8coÞ

00 þdhðlbaP7coÞ
00 ¼ 0 (14)

dyy : dt½dhð2I3�I1Þ�I7�ð
€yy�O2yyÞ�dhðI3�I1Þð €uo

0 �O2uo
0 Þ�dhðI6�I5Þð €vo

0 �O2vo
0 Þ�dt½dhð2I6�I5Þ�I9�ð

€yx�O2yxÞ

þdhf ~a3vo
00 þ ~a32uo

00 �ð ~a34vo
00 þ ~a5uo

00 Þ0gþdtfða43þdh ~a2Þyx
0 �ða44þdh ~a1Þðyy�uo

0 Þþðdh ~a30�a42Þyy
0

þða45þdh ~a31Þðyxþvo
0 Þgþdtfða22þdh ~a11Þyy

0 �ða52þdh ~a8Þðyxþvo
0 Þ�ðdh ~a33þa23Þyx

0 �ða24�dh ~a30Þðuo
0 �yyÞg

0

�dtð½lbaP5co�
0 þ½mbaP4co�l2baP8co

0 �Þ ¼ 0 (15)

dvo : f½dhI2þdeI8�ð €vo
0 �O2vo

0 Þg0 þf½dhI5þdeI9�ð €uo
0 �O2uo

0 Þg0�dhf½I4�I2�ð
€yx�O2yxÞg

0 þdhf½I6�I5�ð
€yy�O2yyÞg

0

�b1 €voþðb1O
2Rvo

0 Þ0�deða33vo
00 þa23uo

00 Þ00 þdtfða45þdh ~a31Þðuo
0 �yyÞþða35þdh ~a30Þyx

0 �ðdh ~a8þa52Þyy
0

þða55þdh ~a7Þðyxþvo
0 Þg0 þdhf½� ~a32vo

00 þ ~a4uo
00 �0 þ½ ~a34yy

0 � ~a10vo
00 þ ~a32ðyxþvo

0 Þ� ~a9yx
0 � ~a35uo

00 � ~a3ðuo
0 �yyÞ�

00g

þpy½z; t��dtðlbaP4co�lbmbaP8co
0 Þ0�deðmbaP8coÞ

00 þdhðmbaP7coÞ
00 ¼ 0 (16)

dyx : dt½dhð2I4�I2Þ�I8�ð
€yx�O2yxÞþdhðI4�I2Þð €vo

0 �O2vo
0 ÞþdhðI6�I5Þð €uo

0 �O2uo
0 Þþdt½dhðI5�2I6Þþ I9�ð

€yy�O2yyÞ

þdhf ~a32vo
00 � ~a4uo

00 þð ~a34uo
00 þ ~a9vo

00 Þ0gþdtfða25þdh ~a8Þyy
0 þða45þdh ~a31Þðyy�uo

0 Þ�ða35þdh ~a30Þyx
0

�ða55þdha7Þðyxþvo
0 Þgþdtfða33þdh ~a12Þyx

0 þðdh ~a2þa43Þðuo
0 �yyÞ�ða23þdh ~a33Þyy

0 þða35þdh ~a30Þðyxþvo
0 Þg0

�dtð½mbaP5co�
0�½lbaP4co�lbmbaP8co

0 �Þ ¼ 0 (17)

dwo : ðap
11w0

0 Þ0 þð ~ap
17f

0Þ0�b1f €wo�O2
ðR0þzþwoÞg�ðaP1coÞ

0 ¼ 0 (18)

df : ðIp
oo

€f 0Þ0�ðIp
xxþ Ip

yyÞ
€fþðb1O

2 ÎPRf0Þ0 þO2
½ðIp

xx�Ip
yyÞðm

2
b�l2bÞf�ðI

p
oof

0Þ0�þO2
ðIp

yy�Ip
xxÞmblbþð ~a

p
17wo

0 Þ0 þð ~ap
77f

0Þ0

�ðap
66f

00Þ00�ðaP6coÞ
0 ¼ 0 (19)

dco : LP22co
00 þaP1wo

0 þmbaP5yx
0 þ lbaP5yy

0 �mbðaP8�aP7Þvo
00 þ lbðaP8�aP7Þuo

00 þaP6f0�mbaP4uo
0 �lbaP4vo

0

þmbaP5yxþmbaP4yy�LP33co ¼ aP10s (20)

Here ( ~aij½z�, aij[z]) are global stiffnesses, the former including pretwist and HSDT effects; (I1; . . . ; I9; I
p
xx; I

p
yy; I

p
oo; b1; Î P) are

structural inertia and mass quantities; aPi are global piezoelectric coefficients; and R[z]=R0(L�z)+0.5(L2
�z2)+

mR(R0+L+rm)/b1 contains the centrifugal stiffening effect (see Appendix A and [18]). The BC’s at the clamped end (z=0)
are uo ¼ vo ¼ yy ¼ yx ¼ uo

0 ¼ vo
0 ¼wo ¼f¼f0 ¼co ¼ 0.

2.5. Discretization

The extended Galerkin method (EGM) [33,34,4,7] is used since the natural BC’s at the beam tip are complicated. This
method employs admissible trial functions, i.e., those that need only satisfy geometric BC’s. For governing systems derived
from a variational principle, like herein, the method is as follows. The residual—using the approximate solution—is formed
by weighting EOM’s (Eqs. (14)–(20)) and natural BC’s with their respective variation (e.g., dyx for Eq. (17)), and adding
individual residuals. Galerkin integrals are then evaluated to yield system matrices that contain contributions from natural
boundary terms also (since residual includes non-satisfaction of natural BC’s). Alternatively, the quadratic energy
functional (like in Eq. (10)) is obtained by suitable integrations in the above residual with beam Coriolis forces neglected.
The approximate solution is then substituted and functional (equivalent to residual) is minimized via Hamilton’s principle,
i.e., the variational process minimizes error in not satisfying natural BC’s and EOM to yield the discretized system (see
Appendix B). The approximate solution is considered of the form,

fuo;vo;wo; yx; yy;f;cog ¼ fU
T
1½z�q1½t�; . . . ;U

T
7½z�q7½t�g (21)
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where Ui and qi (i¼ 1; . . . ;7) are N-dimensional column vectors of trial functions and generalized coordinates, respectively.
The surface charge density due to voltage applied on actuators is given by

s½z; t� ¼UT
7½z�r̂½t� (22)

where r̂jN�1 is the time dependent charge density vector applied on actuators, i.e., the control input to be determined via
LQR control. Using this to eliminate (i.e., statically condense) the electrical degree of freedom co via Eq. (20), the
discretized system

M €qþG _qþKq¼Q ½t��Fŝ½t�; q¼ qT
1j � � � jq

T
6

� �T
(23)

results from the displacement governing Eqs. (14)–(19). Here Gj6N�6N , Q j6N�1, and Fj6N�N represent the gyroscopic
matrix due to rotor (arising from force BC’s at the free end), external forcing, and piezoelectrically induced forcing
coefficients, respectively, while Mj6N�6N and Kj6N�6N are the mass and stiffness matrices, respectively (see Appendix B
and [18]).

3. Optimal control

3.1. Sensor output

Applying Gauss’ law on the exposed surface of sensors, the total charge generated on the i th sensor due to the direct
effect is

~qPi ¼

Z zþ
i

z�
i

I
s

D3Ssfz ds dz


n ¼ h=2

(24)

Since no voltage is applied to sensors and strain ess ¼ 0, the n-component of electric displacement is D3 ¼ E31ezz.
Introducing the strain ezzð ¼w0Þ as obtained from Eq. (5), and performing the spatial discretization yields ~qPi½t� ¼ Ciq. Here
Ci ¼ ½Ci1j � � � jCi6�, with Cij, j¼ 1; . . . ;6, being N-dimensional row vectors [18]. The sensor patches are treated as capacitors
with capacitance CP ¼ x33AP=tP , where AP is the patch surface area. Since the energy stored in a piezoelectric transducer
consists of mechanical and electrical components, the capacitance depends on relative stiffness between transducer and
host; i.e., it varies between the blocked value (corresponding to constant deformation) and the free value (corresponding to
constant stress) [35]. However, following [4], in the present case the free deformation capacitance is considered. The
charge applied on actuators is due to the amplified output of the sensors. It is obtained from the applied charge density s
by integration over the surface. Hence, using Eq. (22), the voltage applied on the i th actuator is

ui½t� ¼ 1=CP

Z zþ
i

z�
i

Z 2k

0
UT

7ŝ½t�Asfz ds dz (25)

In the present case a single sensor–actuator pair extending over the length of the beam is considered, i.e., zi
� =0 and

zi
+ =L, with a single control voltage u replacing the ui. The current from sensors is I½t� ¼ _~q P and power required is

P[t]=u[t]I[t]

3.2. LQR control

Using x¼ fqTj _qT
gT, the state space representation of the system is

_x ¼AxþBr̂þWQ ; A¼
0 I

�M�1K 0

	 

; W¼

0

M�1

	 

; B¼

0

�M�1F

	 

(26)

One seeks the control input vector r̂½t� (i.e., time dependent charge density vector) that minimizes the cost index

J¼

Z 1
0

1

2
xTZxþr̂TRr̂
� �

dt (27)

The above multi-input LQR problem is cast in terms of charge density vector r̂½t� as the control input. Actuator voltages are
then obtained from Eq. (25) for collocated sensor–actuator pairs. Here Z is the positive semidefinite state weighting matrix

representing mechanical energy and thus satisfying Zx¼ aqTKT
jm _qTMT

h iT
, and R is the positive definite control weighting

matrix chosen as R¼ ZFTK�1F, and a;m;Z are suitably chosen weights. The cost minimization, i.e., dJ¼ 0, yields the optimal
control input

r̂ ¼� ~Gx; ~G ¼ R�1BTP (28)

where P is the solution of the algebraic Riccati equation (ARE)

ATPþPA�PBR�1BTPþZ¼ 0 (29)
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The ARE is solved using the stable eigenvectors of the Hamiltonian matrix of the LQR system [36]. Hence, using Eq. (25) the
i th actuator voltage for optimal control is obtained as

ui½t� ¼ �Ĝix where Ĝi ¼ 1=CP

Z zþ
i

z�
i

Z 2k

0
UT

7R�1BTPAsfz ds dz (30)

Thus, the ratio between actuator input voltage and sensor output voltage for the i th piezo-pair is �CPĜix=½Cij0�x. In order
to avoid saturation of the piezoactuators the voltage is limited to sgn[ui]Vmax whenever juijZVmax, where Vmax is the
actuator saturation voltage.

4. Results and discussions

A single ply Graphite-Epoxy host structure is considered. Its properties [29] are given in Table 1, for which subscripts 1
and 2, 3 denote directions parallel and transverse to the fiber, respectively. Table 1 also lists properties [29] of the identical
PZT-4 piezopatches considered, for which subscripts 1, 2, and 3 denote directions parallel to the pretwisted beam axis,
parallel to the xp axis, and parallel to the yp axis, respectively. The geometric data used are also given in Table 1. The
weights a¼ 1, m¼ 1, and Z¼ 10 are used so as to compare results with [18]. The values a¼ 1 and m¼ 1 imply that the first
term in cost index, J, equals the total mechanical energy of the system. The choice Z¼ 10 yields reasonable attenuation. A
study of the choice of weights represents a separate optimization problem by itself and is not considered herein. A method
to choose Z (state weighting) by using the controllability grammian and B (control input matrix) is given in Gawronski
[37]. This procedure ensures that each state is penalized, in the cost index, in inverse proportion to its degree of
controllability. Though not adopted here, this procedure is expected to yield efficient control once Z is optimized.

Results are obtained for a single continuous pair of piezopatches. The trial functions chosen are polynomial series
satisfying BC’s at the root. They are

U1 ¼U2 ¼U6 ¼ z2 z3 z4 . . .
� �T

; U3 ¼U4 ¼U5 ¼U7 ¼ z z2 z3 . . .
� �T

(31)

In this regard it should be noted that modal analysis for beams with distributed piezopatches was studied by Maurini et al.
[38]. In order to model curvature discontinuities in mode shapes, arising due to discontinuous piezopatches, they proposed
an enhanced assumed modes method with jump functions included in the basis functions. Results for natural frequencies
were shown to compare well with standard assumed modes method, 1D FEM, and exact eigenvalue problem solved by
least error norm method. However, mode shapes compared well only with the exact method. Their proposed method
would be useful in control applications with distributed piezo elements. Maxwell and Asokanathan [39] used a
segmentation procedure to model nonuniform beams with distributed actuators. Therein Timoshenko beam segments
with uniform properties are interconnected, and the mode shapes obtained for each segment are placed end-to-end to
yield the overall mode shape. However, using the present formulation, results can also be obtained for distributed pairs of
patches by using the trial functions in Eq. (31), as done in [40], and these results can be compared with the ones obtained
from either of the methods in [38,39]. This, however, is beyond the scope of the present work.

A uniformly distributed excitation is considered, i.e., py[z,t]=py[t], with initial magnitude pm � py½0�. The response due to
step loading, triangular pulse, and sonic boom loading is presented. Unless mentioned otherwise, the results pertain to the
HSDT and are obtained for a linearly pretwisted beam, with O¼ 100 rad s�1, pm ¼ 875:63 N m�1. As mentioned in Section 3.1,
in the present numerical study the piezopatch pair is taken to extend over the span, resulting in a single control voltage being
obtained for application to the single actuator. For the controlled case, the nondimensional tip response v*[t]=vo[L,t]/L,
control voltage u[t] and power P[t] are plotted. These correspond to the fully coupled (flap-lag-extension-twist) motion.

Figs. 3–5 relate to modal convergence studies. In Figs. 3 and 4, the first and second flap bending modes are shown for
ply angle y¼ 03 and beam angular speeds O¼ 0, 500 rad/s, using a N=2, 4, 6, 8 term series of trial functions. Fig. 3 shows
that for the first mode, as the beam speed increases the differences increase between the N=2 result compared to the N=4,
Table 1
Material and geometric properties of system.

Material properties of orthotropic host

E1
H= 20.68 �1010 N m�2 E2

H= 5.17 �109 N m�2 G12
H = G13

H =2.55 �109 N m�2

G23
H = 3.1�109 N m�2 nH

12 ¼ nH
13 ¼ nH

23 ¼ 0:25 rH ¼ 1;528:15 kg m�3

Material properties of PZT-4 piezopatch

C11
P = 1.3897 �1011 N m�2 C12

P = 7.7757 �1010 N m�2 C13
P = 7.4283 �1010 N m�2

C33
P = 1.1497 �1011 N m�2 C44

P = 2.5593 �1010 N m�2 rP ¼ 7;494:88 kg m�3

e31=�5.2 N m�1 V�1 e33=15.098 N m�1 V�1
x33 ¼ 4:009� 10�6 C2 N�1 m�2

Geometric properties of hub, beam, piezopatch, and rotor

R0 =0.2032 m L=2.032 m btip=0.0254 m; ctip=0.127 m

h=0.0127 m s¼ 0:25 k¼ 0:0381 m

tP=0.00127 m mR=1 kg rm=kR=0.2 L



ARTICLE IN PRESS

v o
(p

ur
e 

fla
p)

4

z/L

6

8

4
6,8

4

Ω=500

Ω=0

6,8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 4. Second pure flap mode using 4, 6, 8 term expansion (ply-angle y¼ 03).

−3x 10

V
*

t[s]

t
mp

yp

0

1

2

3

5

6

0 0.05 0.1 0.15 0.2 0.25

N=8
N=6

N=2
N=4

4

Fig. 5. Uncontrolled tip response using 2, 4, 6, 8 term expansion (ply-angle y¼ 603 , beam speed O¼ 100 rad=s).

2
6,8

v o
(p

ur
e 

fla
p)

4,6,8

2

4

z/L

Ω=500
Ω=0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 3. First pure flap mode using 2, 4, 6, 8 term expansion (ply-angle y¼ 03).

N.K. Chandiramani / Journal of Sound and Vibration 329 (2010) 2716–2737 2725
6, 8 results. For both modes, the results using N = 4, 6, 8 are close to each other even for O¼ 500 rad=s, although there do
exist marginal differences when considering N=4. The uncontrolled response, v*[t], for step excitation, y¼ 603 and
O¼ 100 rad=s, is shown in Fig. 5 for N¼ 2; . . . ;8. The response appears to have converged for NZ4, for which the period
increases, thus indicating a decrease in fundamental frequency as the number of trial functions is increased (i.e., as
expected the eigenfrequencies converge from above). Based on modal convergence obtained during eigenvibration and
uncontrolled response studies, the number of trial functions was chosen as N=4.

Table 2 shows the first two eigenfrequencies in flap bending as the nondimensional beam angular speed
Ôð �Oðb1L4=a33ÞÞ and nondimensional tip rotor mass mtð �OðmR=b1LÞÞ are varied. Results from [41] using FEM and
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from [42] using the Frobenius method are compared with those from the present theory, by specializing the latter for an
unshearable, untwisted, untapered beam, with zero rotor speed, zero rotor mass moment of inertia (i.e., rotor reduced to a
point mass), and zero hub radius. The comparison appears very good, with maximum error being 0.34 and 2.82 percent for
o1 and o2, respectively, occurring for Ô ¼ 6. As the tip mass is increased, for the range of beam speeds considered the
fundamental flapping frequency shows a consistent softening behavior. However, a reversal from softening to hardening
Table 3
Comparison with [43], first and second flapping frequencies, o1 and o2, for selected values of tip mass ratio mt.

mt Ô ¼ 1 Ô ¼ 100

o1 o2 o1 o2

[43] Present [43] Present [43] Present [43] Present

0.0 3.6816 3.6787 22.181 22.0611 101.31 101.2301 248.67 247.8445

0.02 3.5548 3.5522 21.405 21.2951 101.27 101.1965 249.24 248.5050

0.04 3.4414 3.4389 20.789 20.6869 101.23 101.1664 250.83 250.1720

0.5 2.2930 2.2920 17.227 17.1609 100.90 100.8698 322.58 322.1873

1 1.9017 1.9010 16.757 16.6962 100.80 100.7782 392.32 391.9386

2 1.5902 1.5897 16.725 16.6669 100.72 100.7122 504.66 504.2376

5 1.3222 1.3219 17.490 17.4339 100.67 100.6622 746.95 746.4019

10 1.2052 1.2049 18.972 18.9172 100.65 100.6433 1031.40 1030.6337
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Fig. 6. Effect of taper s on eigenfrequencies oi (rotor mass mR=1 kg, linear pretwist b0 ¼ 153 , ply-angle y¼ 453 , beam speed O¼ 200 rad=s, rotor speed

O ¼ 200 rad=s).

Table 2

Comparison with [41,42], first and second flapping frequencies, o1 and o2, for selected values of beam angular speed Ô and tip mass ratio mt.

mt Ô o1 o2

[41] [42] Present [41] [42] Present

0 0 3.5160 3.5160 3.5020 22.0352 22.0345 21.4427

1 0 1.5573 1.5573 1.5560 16.2504 16.2500 16.0636

0 3 4.7973 4.7973 4.7794 23.3210 23.3203 22.6901

1 3 3.5823 3.5823 3.5797 20.3507 20.3504 20.1192

0 6 7.3604 7.3604 7.3354 26.8098 26.8091 26.0744

1 6 6.5092 6.5090 6.5047 29.2926 29.2917 28.9665

0 9 10.2258 10.2257 10.1936 31.7716 31.7705 30.8854

1 9 9.4904 9.4899 9.4838 39.8082 39.8048 39.3719

0 12 13.1706 13.1702 13.1311 37.6050 37.6031 36.5378

1 12 12.4827 12.4814 12.4735 50.8684 50.8594 50.3150
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behavior occurs for the second flap frequency for ÔZ6. This reversal is due to the tip rotor mass having a softening effect
by virtue of added mass, as well as a stiffening effect due to centrifugal forces caused by beam rotation. The latter, i.e.,
centrifugal stiffening, increases with beam angular speed, and above a certain speed it overcomes the softening effect due
to added mass. In Table 3, these eigenfrequencies are compared with results from [43] for Ô ¼ 1, 100 and various mt values.
The comparison appears very good, with maximum error being 0.934 percent for o2 which occurs for Ô ¼ 100 and mt=0.
Here too o1 shows consistent softening as mt is increased at both the angular speeds, while o2 stiffens for mt Z5 when
Ô ¼ 1 and stiffens for all mt when Ô ¼ 100, i.e., a reversal from softening to hardening behavior occurs as described above.

The effect of taper on the coupled flap-lag eigenfrequencies is shown in Fig. 6 for pretwist b0 ¼ 153, ply-angle y¼ 453,
beam speed O¼ 200 rad=s, and rotor speed O ¼ 200 rad=s. This shows that a reduction in taper (i.e., increase in taper ratio)
has a negligible effect on the first eigenfrequency, a marginal softening effect on the second eigenfrequency, and for
sZ0:15 a distinct stiffening effect on the third eigenfrequency. Thus, increasing taper marginally increases the operation
bandwidth (i.e., range of excitation frequencies for non-resonant response) for low frequency input, and decreases the
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100

200

300

400

500

600

700

m R [kg]

ω
i [ 

ra
d/

se
c 

]

ω 1
ω 2
ω 3

Fig. 7. Effect of tip rotor mass mR on eigenfrequencies oi (taper ratio s¼ 0:25, linear pretwist b0 ¼ 153 , ply-angle y¼ 453 , beam speed O¼ 200 rad=s, rotor

speed O ¼ 200 rad=s).
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bandwidth for high frequency input. This trend compares quite well with the results in [6] wherein a solid beam is
considered and the inverse of the present definition is used for the taper ratio.

For the same data, Fig. 7 shows the eigenfrequencies as the tip rotor mass is increased. A distinct reduction in the first
and third eigenfrequencies is noted for lower values of mR, thus indicating overall softening behavior for this range of tip
rotor mass, i.e., gyroscopic and mass softening dominate over centrifugal stiffening. The second eigenfrequency reduces
only marginally when mR is increased, i.e., gyroscopic and mass softening barely dominate over centrifugal stiffening for
this mode. This is due to the fact that the first and third eigenfrequencies correspond to coupled modes in which flap
motion is dominant, while the second eigenfrequency is for lag dominated coupled motion. Thus, the second
eigenfrequency is only marginally affected by variation in tip rotor mass.

The three formulations, i.e., unshearable, first-order and higher-order shearable theories are compared in Figs. 8–10 for
the first three eigenfrequencies. Here linear and quadratically varying pretwist is considered with y¼ 903; b1 ¼ 453;
b2 ¼ 453; b0 ¼ 903; O ¼ 250 rad=s. The HSDT formulation yields the lowest coupled natural frequencies, thus providing
conservative data for use in attaining non-resonant passive as well as active control designs. This emphasizes the
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importance of considering variations in transverse shear across the beam wall. For all three formulations the effect of
pretwist distribution (i.e., whether linear or quadratic) diminishes (especially for the second eigenfrequency) as the hub
speed increases, for the range of speed considered herein. This is due to predominance of centrifugal stiffening over
pretwist effect, at large hub speeds. While the first and third eigenfrequencies are higher for linearly distributed pretwist,
the second eigenfrequency is higher for quadratic pretwist. This is due to the second coupled mode being lag dominant as
compared to the first and third modes where flap motion dominates. As the hub speed increases, a crossover in the second
eigenfrequency predicted by the unshearable and first-order shearable theories is evident for both cases of pretwist. This
crossover is due to the presence of the tip rotor which has a greater contribution towards centrifugal stiffening within the
first-order formulation.

Figs. 11–14 provide a comparison of the present control scheme where electric field variation along span is considered
in the plant model, with the one considered in [18] for a uniform electric field. This pertains to a rotorless untapered beam
with step excitation and b0 ¼ 303, O¼ 200 rad=s, y¼ 303;603. Both plant models predict greater attenuation when the
larger ply angle is used (Figs. 11 and 13). This is expected since the bending rigidities increase as the fibers are aligned
along the longitudinal, i.e., z, axis of the beam. Note that ply angle is measured with respect to the cross-sectional s-axis, as
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is natural for filament wound composites. However, as seen from Fig. 11, a greater rate of attenuation is obtained with
smaller ply angle when using plant dynamics with uniform electric field assumption [18]. In contrast, a greater control
voltage is required when using the larger ply angle (Figs. 12 and 14), since the more rigid beam requires greater actuation
voltage. When comparing Figs. 13 and 14 with Figs. 11 and 12 (reproduced from [18]), it is evident that the present plant
model yields an order-of-magnitude reduction in control voltage required. The settling time reduces fivefold, and a 30
percent attenuation in peak response—hence greater overall response attenuation—occurs. This corroborates the result
reported in [20] that the electromechanical coupling provides an overall stiffening as compared to the uncoupled system.
Since the present plant dynamics represents the actual coupled electromechanical system in contrast to the approximation
of decoupling implied in [18], this result shows that the control achievable by LQR design is even better than what was
previously reported in [18].

Fig. 15 shows the controlled response for a triangular pulse excitation, when a saturation voltage constraint of 200 V is
applied on the actuator voltage. The data used are y¼ 753, b0 ¼ 303, O¼ 200, O ¼ 10 rad=s. The attenuation rate is greatly
reduced when using the voltage constraint (as compared to applying an unconstrained voltage assuming no actuator
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saturation) and appears almost linear. The peak tip response for unlimited actuator voltage is around 90 percent of the
peak response when using constrained voltage, and corresponding settling times are 0.29 and 0.43 s, i.e., a one-third
reduction in settling time for the unconstrained case. However, Fig. 16 shows that the peak power requirement is reduced
fivefold when the voltage is constrained. The appearance of higher harmonics in the power requirement is clearly visible
when actuator saturation is considered. This is due to frequent clipping of voltage as the saturation limit of 200 V is
reached. Thus, despite actuator saturation the control remains quite effective as compared to without actuator saturation,
and it also provides tremendous power saving.

When considering structural tailoring along with active control, the rotorless system shows greater response
attenuation for a larger ply-angle layup, due to increased bending rigidity, as seen in Fig. 13. In contrast, the system with
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rotor with mR=1 kg, b0 ¼ 303; O¼ 400 rad=s; O ¼ 40 rad=s, and subject to sonic boom excitation, shows a reversal in this
trend as seen in Fig. 17. Although peak responses for the two ply angles differ marginally, the attenuation rate for smaller
ply angle is distinctly greater, resulting in a settling time of 0.28 s compared to 0.38 s for the larger ply angle. This is due to
the coupling action from gyroscopic forces, arising due to the tip rotor, which have a significant effect on the response. This
shows the action of gyroscopic control in addition to ply angle tailoring and active piezo control.

Fig. 18 shows the effect of taper on tip response, for bo ¼ 303, y¼ 303, O¼ 400, O ¼ 40 rad=s and step forcing. As
expected, the response increases with taper, i.e., a uniform cross-section beam has the lowest response, due to its bending
rigidity being uniformly higher over the span. However, the attenuation rate also increases with taper, resulting in
comparable settling times for all taper values. The marginal increase in period, i.e., decrease in fundamental frequency, as
taper ratio increases, conforms with the result in Fig. 6. When mass of tip rotor is increased, the response attenuates with
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period visibly unchanged, as shown in Fig. 19. The data used are b0 ¼ 603, y¼ 303, O¼ 400, O ¼ 40 rad=s. The attenuation
occurs due to centrifugal stiffening, caused by increase in rotor mass, which is more pronounced than the gyroscopic
softening that occurs only for relatively small values of rotor mass as noted earlier (see Fig. 7). However, settling times are
almost same for the range of rotor mass considered, since higher decay rates compensate for larger response as rotor mass
decreases.

Fig. 20 shows the comparison between an untwisted, linearly pretwisted, and parabolically pretwisted beam. The data
used are s¼ 1, y¼ 303, pretwist b0 ¼ b2 ¼ 303, O¼ 400, O ¼ 40 rad=s. The attenuation is greatest for the beam with linear
pretwist and least for the untwisted beam. Steady state responses for the linearly pretwisted and the parabolically
pretwisted beams are around 82 and 94 percent that of the untwisted beam, respectively. This shows that pretwist,
included from fluid dynamic considerations to enhance performance, can also be beneficially exploited for control. An
increase in period, and marginal reduction in settling time, occurs for the pretwisted beams when compared to the
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untwisted case. The periods as well as settling times of both pretwisted beams are near identical. Both pretwisted beams
have near identical requirements of control voltage and power, as seen from Figs. 21 and 22, with peak control voltage
being around 23 percent higher and peak power being around 14 percent lower than for the untwisted beam. However,
average voltage and power requirements in all three cases is comparable.

5. Conclusions

A structural model for a rotating, doubly tapered, pretwisted, composite blade, with piezoelectric sensors–actuator
pairs, and a tip rotor has been developed based on a higher-order shear deformation theory. The optimal control problem is
studied for a wide range of excitations. The variation of the electric field along the span has been considered. Thus a
coupled electromechanical system is obtained, as opposed to when a uniform field is considered. This results in increased
attenuation, and reduced settling time and control voltage required, i.e., the control is much better than obtained by using
the previous model [18] based on a uniform electric field (Figs. 11–14). This conforms to the result reported in [20]. Peak
power requirement is much lower when actuator saturation is considered, with only a modest reduction in peak response
attenuation (Figs. 15 and 16). Structural tailoring studies reveal that the coupling action of gyroscopic forces due to tip
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rotor have a significant effect on response attenuation (Figs. 13, and17). As the tip rotor mass is increased, centrifugal
stiffening dominates the gyroscopic softening behavior (Figs. 7 and 19). Parametric studies show that the HSDT provides
conservative eigenfrequencies (Fig. 9). The results underscore the importance of synthesizing active control and structural
tailoring, and considering through-thickness variations of shear strains and spanwise variations of electric field in
achieving control effective designs. Since all states are usually not available for feedback, future work will be based on
feedback of optimally estimated states, i.e., LQG control.
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Appendix A. Global piezoelectric coefficients

The reduced constitutive law for the transversely isotropic piezopatch is:
Converse piezoelectric effect:
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Direct piezoelectric effect:
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Here Di is the electric displacement vector and Ei is the applied electric field. The quantities xij, Qij
P, Eij, zij, denote dielectric,

reduced elastic, reduced piezoelectric, and reduced dielectric constants, respectively, for the piezopatch as defined in [18]
(e.g., Q16

P = Q26
P = Q45

P = 0, E15 ¼ e15). The transformed reduced stiffness and reduced piezoelectric coefficients for the
composite beam are

Q ij ¼ Q
H

ij þ QP
ij�Q

H

ij

� �
fsfnfz; E ij ¼ EijAsfnfz (A.4)

where Q
H

ij are the transformed reduced stiffnesses of the generally orthotropic host [18].
The global piezoelectric coefficients are (see also [18])

LP22 ¼

I
L22ds; LP33 ¼

I
L33 ds; aP10 ¼

I
h2=4�t2

p

� �
Asfz ds (A.5)

Appendix B. Details of system discretization

EGM illustration: Consider the axial force natural BC at the tip, given by
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Following the EGM procedure in Section 2.5, the contribution from Eqs. (18) and (B1) to the minimization of the functional/
residual is
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In Eq. (B.2), terms with b1 and mR are components of beam- and rotor-kinetic energy, respectively, and the dw0
0 terms are

components of strain energy and electrical work. Substituting approximate solution Eq. (21) in Eq. (B.2), performing the
variation as dðUT

i ½z�qi½t�Þ ¼UT
i ½z�dqi½t�, and integrating over the span yields the contributions to system matrices.
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Mass matrix (symmetric):

Mj6N�6N ¼

Z L

0
½MijjN�N �dzþ½mijjN�N�
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(B.3)

Mij = mij=0, iaj, except for M12, M14, M15, M24, M25, m15, m24; mii ¼mRUiU
T
i ; i¼ 1;2;3; mii ¼ IxxyyUiU

T
i ; i¼ 4;5;

Ixxyy=mR(rm
2 +kR

2/4); mii ¼ IzzUiU
T
i ; i¼ 6; Izz=mRkR

2/2; mij ¼�mRrmUiU
T
j ; iaj;

Gyroscopic matrix (skew symmetric):
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